3.347 \(\int \frac{\cot ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=62 \[ \frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a f (a+b)^{3/2}}-\frac{\cot (e+f x)}{f (a+b)}-\frac{x}{a} \]

[Out]

-(x/a) + (b^(3/2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a*(a + b)^(3/2)*f) - Cot[e + f*x]/((a + b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.173957, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {4141, 1975, 480, 522, 203, 205} \[ \frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a f (a+b)^{3/2}}-\frac{\cot (e+f x)}{f (a+b)}-\frac{x}{a} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

-(x/a) + (b^(3/2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a*(a + b)^(3/2)*f) - Cot[e + f*x]/((a + b)*f)

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (1+x^2\right ) \left (a+b \left (1+x^2\right )\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (1+x^2\right ) \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cot (e+f x)}{(a+b) f}+\frac{\operatorname{Subst}\left (\int \frac{-a-2 b-b x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{(a+b) f}\\ &=-\frac{\cot (e+f x)}{(a+b) f}-\frac{\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{a f}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{a (a+b) f}\\ &=-\frac{x}{a}+\frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a (a+b)^{3/2} f}-\frac{\cot (e+f x)}{(a+b) f}\\ \end{align*}

Mathematica [C]  time = 1.35378, size = 204, normalized size = 3.29 \[ -\frac{\sec ^2(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (b^2 (\cos (2 e)-i \sin (2 e)) \tan ^{-1}\left (\frac{(\cos (2 e)-i \sin (2 e)) \sec (f x) (a \sin (2 e+f x)-(a+2 b) \sin (f x))}{2 \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}}\right )+\sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4} (f x (a+b)-a \csc (e) \sin (f x) \csc (e+f x))\right )}{2 a f (a+b)^{3/2} \sqrt{b (\cos (e)-i \sin (e))^4} \left (a+b \sec ^2(e+f x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

-((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^2*(b^2*ArcTan[(Sec[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 2*b)*Sin
[f*x]) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e] - I*Sin[e])^4])]*(Cos[2*e] - I*Sin[2*e]) + Sqrt[a +
b]*Sqrt[b*(Cos[e] - I*Sin[e])^4]*((a + b)*f*x - a*Csc[e]*Csc[e + f*x]*Sin[f*x])))/(2*a*(a + b)^(3/2)*f*(a + b*
Sec[e + f*x]^2)*Sqrt[b*(Cos[e] - I*Sin[e])^4])

________________________________________________________________________________________

Maple [A]  time = 0.086, size = 73, normalized size = 1.2 \begin{align*} -{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{fa}}-{\frac{1}{f \left ( a+b \right ) \tan \left ( fx+e \right ) }}+{\frac{{b}^{2}}{f \left ( a+b \right ) a}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^2/(a+b*sec(f*x+e)^2),x)

[Out]

-1/f/a*arctan(tan(f*x+e))-1/f/(a+b)/tan(f*x+e)+1/f/(a+b)*b^2/a/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(
1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.57375, size = 757, normalized size = 12.21 \begin{align*} \left [-\frac{4 \,{\left (a + b\right )} f x \sin \left (f x + e\right ) - b \sqrt{-\frac{b}{a + b}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \,{\left ({\left (a^{2} + 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt{-\frac{b}{a + b}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right ) \sin \left (f x + e\right ) + 4 \, a \cos \left (f x + e\right )}{4 \,{\left (a^{2} + a b\right )} f \sin \left (f x + e\right )}, -\frac{2 \,{\left (a + b\right )} f x \sin \left (f x + e\right ) + b \sqrt{\frac{b}{a + b}} \arctan \left (\frac{{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{b}{a + b}}}{2 \, b \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + 2 \, a \cos \left (f x + e\right )}{2 \,{\left (a^{2} + a b\right )} f \sin \left (f x + e\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

[-1/4*(4*(a + b)*f*x*sin(f*x + e) - b*sqrt(-b/(a + b))*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b +
4*b^2)*cos(f*x + e)^2 - 4*((a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^3 - (a*b + b^2)*cos(f*x + e))*sqrt(-b/(a + b))*s
in(f*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2))*sin(f*x + e) + 4*a*cos(f*x + e))/((a^2 +
 a*b)*f*sin(f*x + e)), -1/2*(2*(a + b)*f*x*sin(f*x + e) + b*sqrt(b/(a + b))*arctan(1/2*((a + 2*b)*cos(f*x + e)
^2 - b)*sqrt(b/(a + b))/(b*cos(f*x + e)*sin(f*x + e)))*sin(f*x + e) + 2*a*cos(f*x + e))/((a^2 + a*b)*f*sin(f*x
 + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{2}{\left (e + f x \right )}}{a + b \sec ^{2}{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**2/(a+b*sec(f*x+e)**2),x)

[Out]

Integral(cot(e + f*x)**2/(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.39033, size = 123, normalized size = 1.98 \begin{align*} \frac{\frac{{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )} b^{2}}{{\left (a^{2} + a b\right )} \sqrt{a b + b^{2}}} - \frac{f x + e}{a} - \frac{1}{{\left (a + b\right )} \tan \left (f x + e\right )}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))*b^2/((a^2 + a*b)*sqrt(a*b + b^
2)) - (f*x + e)/a - 1/((a + b)*tan(f*x + e)))/f